

1

Changes in FpML 5.11-Recommendation

compared to FpML 5.10 published February 12, 2018

Syndicated Loan (Confirmation View) (changes in 5.11 compared to 5.10)

Major design approach changes have resulted in significant revision to the Loan FpML schema for

version 5.11. These changes better support uniformity of design, extensibility, and simplification (e.g.

reducing the number of acknowledgement, exception, and retracted messages within the schema).

Changes include:

1. ‘Trade’ vs. ‘Transfer’ Concepts

 The differentiation between the term ‘trade’ and ‘transfer’ was eliminated from the

Loan FpML schema as this was creating confusion. As such:

o The ‘trade’ (‘LoanTrade’ complex type) structure has been remodeled such

that the elements of ‘price’, ‘transferFee’, the models

‘LoanTradingCounterpartyCashSettlementRules.model’ and

‘LoanTradingParticipationSettlementTerms.model’ have all been placed on an

optional sequence, to be included when the communication of the loan trade

event is between counterparties (as opposed to between counterparty and

agent).

o The ‘loanAllocationSettlement’ (‘LoanAllocationSettlementEvent’ complex

type) event has been remodeled such that the element of ‘fundingFactors’ has

been placed on an optional sequence, to be included when the expression of

the settlement of the allocation is between counterparties (as opposed to

between counterparty and agent).

 These changes place more onus on the party implementing the standard to understand

when it is appropriate to send the optional sequences mentioned above. XML examples

describing the way to appropriately use these new optional sequences have been

produced.

2. Abstract Type Structural Changes

Added or changed existing abstract types to support better organization within the above-

mentioned substitution groups.

 ‘AbstractFacilityRateChangeEvent’

o This abstract type was added to communicate rate change events at the facility

level.

 ‘AbstractLoanContractPaymentEvent’

o This abstract type allows nonrecurring fee payment events at the loan contract-

level to derive from a single structure.

2

 ‘AbstractLoanAllocationSummary’

o Corrected the type for the attribute ‘id’ to xsd:ID (previously missing a type).

o Changed ‘amount’ element to NonNegativeMoney type.

 ‘AbstractLoanTradeSummary’

o Corrected the type for the attribute ‘id’ to xsd:ID (previously missing a type).

 ‘AbstractLoanEvent’

o Changed the inheritance so that the ‘AbstractLoanEvent’ no longer inherits

AbstractEventRequireId, but rather just includes an ‘eventIdentifier’

(BusinessEventIdentifier complex type).

o An optional ‘previousEventIdentifier’ element was added to this structure to

reference an event that came chronologically before the event being conveyed

by the message.

 ‘AbstractLoanAllocationPaymentNotification’

o The ‘payment’ element (LoanAllocationPayment complex type) should be

used to express a rollup of all cash payable amounts related to allocations (so

as to mirror the use of the comparable ‘eventPayment’ element in the

AbstractServicingNotification), otherwise the element is redundant with the

‘cashPayable’ element within the allocation events themselves. This abstract

type was retired from the 5.11 schema, and the ‘payment’ element

(LoanTradingPayment complex type) was added to

AbstractLoanTradingNotification, with 0..n cardinality.

 ‘AbstractLoanAllocationSummary’

o This abstract type was removed, as it was an additional layer that created

confusion with multiple ‘id’ attributes. The removal of this abstract type

fosters consistency throughout the schema.

 ‘AbstractLoanPartyProfileNotification’

o The AbstractLoanPartyProfileStatement in 5.11 is not backward compatible

due to the name change of this abstract type, as described in the previous

section.

 ‘AbstractLoanTradePaymentNotification’

o This abstract type was retired for the same reason as the

AbstractLoanAllocationPaymentNotification, described above.

 ‘AbstractLoanTradeSummary’

o This abstract type was removed, as it was an additional layer that created

confusion with multiple ‘id’ attributes. The removal of this abstract type

fosters consistency throughout the schema.

 AbstractLoanTradingNotification’

o This abstract type was split into ‘AbstractLoanTradeNotification’ and

‘AbstractLoanAllocationNotification’ in order to provide the ability for

structures that inherit these abstract types to accurately reference supporting

structures in each. The original abstract type contained only an

‘allocationReference’ element. A ‘tradeReference’ element was created and

included in ‘AbstractLoanTradeNotification’.

3

 IdentifiedAssetWithParty

o Extended Asset to include the ‘PartyAndAccountReferences.model’,

description, and ‘instrumentId’.

o This looks similar to the shared structure ‘IdentifiedAsset’, but with the above-

mentioned included model. We decided not to inherit directly from

‘IdentifiedAsset’, as due to the inheritance hierarchy adding the model made

the relationship of the party/account reference to the ‘instrumentId’ element

unclear.

o Changed all asset identifiers (Deal, Facility; Loan Contract and Letter of

Credit already inherited ‘ContractIdentifier’) to inherit the new

‘IdentifiedAssetWithParty’ structure.

 NonRecurringFeePayment

o This abstract type was misnamed without the ‘Abstract’ prefix. This was

renamed as ‘AbstractNonRecurringFeePayment’ in 5.11 and is not backward

compatible.

3. Inheritance Structural Changes

Several events have been redesigned to inherit consistently from the same abstract type as other

events occurring at the same structural level (contract level, facility level, LC level, trade level,

allocation level). The following events are impacted:

 amendmentFeePayment

 breakageFeePayment

 facilityExtensionFeePayment

 fundingFeePayment

 miscFeePayment

 upfrontFeePayment

 waiverFeePayment

4. Substitution Group Structural Changes

 Substitution groups utilized by the loan servicing type messages were not organized in

consistent ways. I.e. some substitution groups seemed to aggregate events by fee-types

in one instance, while others seemed to aggregate events by structural location. For

example, in FpML 5.10 the ‘facilityFeePaymentGroup’ is utilized for non-recurring fee

events at both the facility and contract level.

 To remedy the inconsistent application of substitution groups across the loan servicing

type message set, the substitution groups were redesigned and reorganized into:

o ‘facilityEventGroup’ – this group now contains all facility-level events based

on the ‘AbstractFacilityEvent’ type.

o ‘loanContractEventGroup’ – this group now contains all loan contract-level

events based on the ‘AbstractLoanServicingEvent’ type.

o ‘lcEventGroup’ – this group now contains all letter of credit-level events based

on the ‘AbstractLcEvent’ type.

o ‘loanTradeEventGroup’ – this group now contains all trade-level events based

on the ‘AbstractLoanTradeEvent’ type.

4

o ‘loanAllocationEventGroup’ – this group now contains all allocation-level

events based on the ‘AbstractLoanAllocationEvent’ type.

5. ‘Event’ Structural Changes

Events have been added or redesigned to be more consistent across the Loan FpML schema.

Changes include:

 ‘AccrualOptionChangeEvent’

o There was no ‘AccrualOptionChangeEvent’, even though other similar events

were expressed as such (e.g. ‘AccruingFeeChange’). The elements related to

this business event were described as ‘loose’ elements within a message

element wrapper that was derived directly from ‘AbstractContract

Notification’. As such, a new ‘AccrualOptionChangeEvent’ was created that

inherits from ‘AbstractFacilityEvent’ and extends it with the necessary

elements. This also allows this event to reside within the ‘facilityEventGroup’

substitution group.

 ‘Prepayment’ and ‘Rollover’

o Embedded events have been stripped out of these two structures. Embedded

events already existed as stand-alone events, and the approach of embedding

events created redundant expression of certain elements, and ambiguity around

utilization.

o ‘maturingContracts’ – this has been renamed to ‘currentContracts’

o ‘currentContracts’ – this has been renamed to ‘newContracts’

 Embedded Event Processing

Going forward, conveying a relationship between events which were previously

embedded within other events can be accomplished by one of two ways:

o Send all events as separate servicing event notifications, relating the

notifications via the ‘childEventIdentifier’/’parentEventIdentifier’

relationship; or,

o Send all related events within the same ‘loanServicingNotification’ message

element wrapper, relating events via the ‘childEventIdentifier’/’parent

EventIdentifier’ relationship mentioned above.

XML examples have been produced to explicitly depict this schema change.

6. Discrete Element Naming Changes

 The term ‘notification’ should be reserved for the purposes of expressing a business

event. As such, ‘LoanPartyProfileNotification’ has been renamed. The word

‘notification’ has been replaced by ‘statement.’ This has occurred at both the complex

type and element levels.

 The ‘adjustment’ event within the ‘loanContractEventGroup’ substitution group has

been renamed to ‘loanContractAdjustment’ to clarify the intent of the event.

 The ‘type’ element within the ‘LoanTrade’ complex type has been changed to

‘marketType’ to be more explicit as to the ‘type’ being communicated and align it with

common business terminology. The complex type has not been altered and still derives

from the ‘LoanTradingTypeEnum’ enumeration.

5

7. ‘Notification’ Wrapper Structural Changes

 By reorganizing substitution groups as noted above, it became possible to streamline

message element ‘wrappers’ into one ‘LoanServicingNotification’ core type. The

‘LoanServicingNotification’ now includes all loan servicing-level events with 1-to-

many cardinality, encompassing what was previously accomplished in the separate

notifications. The following notifications are now expressed by the

‘LoanServicingNotification’ and no longer exist as stand-alone notification structures

within the Loan FpML schema:

o ‘loanContractNotification’

o ‘lcNotification’

o ‘facilityNotification’

o ‘loanBulkServicingNotification’ – this message element wrapper is no longer

necessary, as multiple events can be sent using 1 ‘loanServicingNotification.’

 The following structures are not included in the newly created

‘loanServicingNotification’ but have changed since the implementation of FpML v5.10:

o ‘loanAllocationNotification’ – this message element wrapper now contains a

substitution group with all trade allocation-level events. It also contains the

‘settlementTask’ element (‘LoanAllocationSettlementTask’ complex type) for

allocation-level tasks, on a choice sequence with the ‘loanAllocationEvent

Group’ substitution group, so that this single message can now be conveyed to

represent both allocation events and allocation settlement tasks. Event elements

related to the following notifications are now expressed by the substitution

group within the ‘loanAllocationNotification’, and no longer exist as stand-alone

notification structures within the Loan FpML schema:

 loanAllocationConfirmationNotification

 loanAllocationSettlementNotification

 loanAllocationSettlementTaskNotification

 loanAllocationSettlementDateAvailabilityNotification

 loanAllocationSettlementDateFinalizationNotification

 loanAllocationTransferFeeDueNotification

 loanAllocationTransferFeeOwedNotification

o ‘loanTradeNotification’ – this message element wrapper now contains a

substitution group with all trade-level events. It also contains the

‘settlementTask’ element (‘LoanTradeSettlementTask’ complex type) for

trade-level tasks, on a choice sequence with the ‘loanTradeEventGroup’

substitution group, so that this single message can now be conveyed to

represent both trade events and trade settlement tasks. Event elements related

to the following notifications are now expressed by the substitution group

within the ‘loanTradeNotification’, and no longer exist as stand-alone

notification structures within the Loan FpML schema:

 loanTradeConfirmationNotification

 loanTradeSettlementTaskNotification

 loanTradeTransferFeeDueNotification

 loanTradeTransferFeeOwedNotification

 loanTransferNotification

6

 loanTransferSettlementNotification

8. Other Complex Type Changes

Changes were made to complex type structures or inheritance in order to support uniformity

and design consistency. These changes include:

 ‘AccrualOptionChangeEvent’

o The following complex types were incorporating entire event structures, which

was inappropriate. We changed the inheritance for the following to inherit the

imbedded complex type only and not the entire event structure:

 fixedRateOptionChange – also changed name to ‘fixedRateOption’

a. Added ‘loanContractReference’ to sequence with the complex

type

b. Removed the contract complex type object - there should be a

reference to the footer.

 floatingRateOptionChange – also changed name to ‘floatingRateOption’

a. Added ‘loanContractReference’ to sequence with the complex

type

b. Removed the contract complex type object - there should be a

reference to the footer.

 accuringPikOptionChange - also changed name to ‘accruingPikOption’

 lcOptionChange – also changed name to ‘lcOption’

a. Added ‘letterOfCreditReference’ to sequence with the complex

type

b. Removed ‘letterOfCredit’ complex type object - there should be a

reference to the structure in the footer.

 ‘ApplicableAssets’

o Added ‘LoanAllAssetsEnum’ to a choice block to all for the explicit

declaration of the applicability of all assets.

 ‘ApplicableTransactions’

o Added ‘LoanAllTransactionsEnum’ to a choice block to all for the explicit

declaration of the applicability of all assets.

 ‘ApplicableCommunicationDetails’

o ‘ApplicableAssets’ minimum occurrences allowed changed from 0 to 1.

o ‘ApplicableTransactions’ minimum occurrences allowed changed from 0 to 1.

 ‘CashPayable’

o Replaced ‘PayerReceiver.model’ with ‘SimplePayerReceiver.model’ to

eliminate the account references that are not used.

 ‘DealIdentifier’

o Created a ‘dealIdentifier’ element along with href pointers, that was added to

all relevant statements and notifications.

 ‘DealSummary’

o Created a ‘dealSummary’ element along with href pointers, that was added to

all relevant statements and notifications.

 ‘EventPayment’

7

o Optional ‘SettlementInstructions’ complex type included in the structure to

meet a specific business use case expressed by the working group.

 ‘FacilityPrepayment’

o Renamed ‘Prepayment’ to ‘FacilityPrepayment’ and removed

‘prepaymentFee’ from this event. This resolves an issue with similar naming

of elements across different asset classes.

 ‘FacilityPrepaymentFeePayment’

o Created a ‘FacilityPrepaymentFeePayment’ element to capture the event of

paying the prepayment fee. This event corresponds to the ‘Facility

Prepayment’ event. This change also resolves an issue with similar naming of

elements across different asset classes.

 ‘EventPayment’

o Optional ‘SettlementInstructions’ included in the structure to meet specific

business use cases.

o Inheritance changed to ‘LoanSimplePayment’ (which inherits ‘Simple

Payment’) to remove elements that are not used by the syndicated loan market.

 ‘LoanAllocation’

o Replaced ‘BuyerSeller.model’ with ‘SimpleBuyerSeller.model’ to facilitate

the syndicated loan asset class.

 ‘LoanAllocationNotification’

o Added LetterOfCreditDetails.model and LoanContractDetails.model on an

optional choice block (0..n) to allow reference structure optionality.

 ‘LetterOfCredit’

o Added a missing ‘id’ attribute to facilitate reference by other objects

 ‘LetterOfCreditSummary’

o Added a missing ‘id’ attribute to facilitate reference by other objects.

o Changed structure to inherit ‘FacilityContractIdentifier’ for consistency of

schema design.

 ‘LoanAllocationSettlementEvent’

o Changed the ‘amount’ element to ‘NonNegativeMoney’ type and added an

optional ‘SimplePayerReceiver.model’ to clarify cash flow for the following

elements within the ‘fundingFactors’ element:

 ‘delayedCompensation’

 ‘costOfCarry’

 ‘economicBenefits’

**The actual accrual amounts within the structure remain

‘MoneyWithParticipantShare’ types in order to account for scenarios such as

inverse accrual rates and unfunded facilities.

 ‘LoanAllocationSummary’

o Created this concrete type for consistency of schema design, due to the

removal of the AbstractLoanAllocationSummary abstract type.

 ‘LoanContract’

o Added a missing ‘id’ attribute to facilitate reference by other objects.

 ‘LoanContractAdjustment’

8

o Changed the element name from ‘adjustment’ to ‘loanContractAdjustment’ for

clarity.

 ‘LoanContractNotification’

o LoanContractDetails.model changed from 1 to 1..n to support the idea of

multiple existing contracts rolling into multiple new contracts (i.e. one to

many, many to one, many to many) within the Rollover event.

 ‘LoanContractSummary’

o Added a missing ‘id’ attribute to facilitate reference by other objects.

o Changed structure to inherit ‘FacilityContractIdentifier’ for consistency of

schema design.

 ‘LoanSimplePayment’

o Changed ‘paymentDate’ to inherit ‘AdjustableDate’ instead of ‘RelativeDate,’

as ‘RelativeDate’ is not a concept that applies to a loan payment.

 ‘LoanTrade’

o Changed ‘type’ element to ‘marketType’ to clarify between primary or

secondary.

 ‘LoanTradingDelayedCompensation’

o Changed ‘amount’ element to type ‘Money’ in order to account for potential

all-in negative values.

 ‘LoanTradingPayment’

o Optional ‘SettlementInstructions’ object included in the structure to meet

specific business use cases.

o Inheritance changed to LoanSimplePayment (which inherits SimplePayment)

to remove elements that are not used by the syndicated loan market.

 ‘LoanTradingNonRecurringFee’

o Significant changes were made to this structure, including a more exhaustive

representation of potential identification and reference of non-accruing fees to

asset structure, and more optionality to include miscellaneous fees within this

structure. This complex type was also renamed to ‘LoanTradingNonAccruing

Fee’ and removed from the ‘LoanTradingSettlementAccruals.model’ structure.

For more detail see the section on ‘LoanTradingSettlementAccruals.model’

changes below.

 ‘LoanTradingSettlementTaskDates’

o Changed the name of the enum to ‘LoanTaskDates’ to make it more

universally usable (as opposed to specific to the loan trading settlement

scenario). Values within the enum were NOT changed.

 ‘ParentEventIdentifier’

o Created an optional structure which inherits the ‘BusinessEventIdentifier’

structure and extends by adding a required 2..n element ‘childEventIdentifier’

(based on ‘BusinessEventIdentifier’) to describe all the underlying child

events. This provides the ability to reconcile when related event notifications

may be missing, or events within the same ‘LoanServicingNotification’

structure may be missing (a business validation point).

9

 ‘ParentTaskIdentifier’

o Created an optional structure which inherits the ‘BusinessTaskIdentifier’

structure and extends by adding a required 2..n element ‘childTaskIdentifier’

(based on ‘BusinessTaskIdentifier’) to describe all the underlying child tasks.

This provides the ability to reconcile when related task notifications may be

missing, or events within the same ‘LoanServicingNotification’ structure may

be missing (a business validation point).

9. Changes to ‘Statements’

To support uniformity and design consistency the following changes were made to ‘statement’

types:

 ‘DealStatement’

o Added a sequence with 1..n optionality ahead of the ‘facilityGroup’

substitution group. Originally the head of the substitution group was set to

1..n which wouldn’t accomplish the outcome we want: multiple facilities of

potentially multiple (or same) types. By adding the sequence and changing

that sequence to 1..n we are able to include multiple facilities of either the

same or different type.

 ‘FacilityOutstandingsPositionStatement’

o This statement was removed in favor of adding an optional outstandings

structure, using the ‘facilityPosition’ element, to the

‘FacilityPositionStatement’.

 ‘LoanPartyEventInstructionOverrideStatement’

o This statement was removed since optional settlement instruction elements

now exist in all servicing and trading notifications. Related structures (i.e.

‘overrideId’) were removed.

 ‘LoanPartyProfileStatement’

o Within this statement, the ‘communicationDetails’ element contained

‘purpose,’ ‘personReference,’ and ‘businessUnitReference.’ These have been

replaced by a structure that contains ‘relatedPerson’ and ‘relatedBusinessUnit’

which are both elements inherited from the broader schema. The

‘relatedPerson’ and ‘relatedBusinessUnit’ structures contain a ‘role’ element,

which can be used to convey what ‘purpose’ had previously been intended to

convey.

 ‘LoanPartyTradingInstructionOverrideStatement’

o This statement was removed since optional settlement instruction elements

now exist in all servicing and trading notifications. Related structures (i.e.

‘overrideId’) were removed.

 ‘OutstandingContractsStatement’

o An optional ‘DealDetails.model’ has been added to this statement, to correlate

with the optional ‘dealReference’ included in the ‘facilityIdentifier’ element.

10

10. Changes to Models

To support uniformity and design consistency the following changes have been made to

models:

 ‘DealDetails.model’

o This model was created to reference a deal by either identifier or summary,

within various statements and notifications.

o Contains ‘dealSummary’ and ‘dealIdentifier’ elements.

 ‘LoanTradeAllocationDetails.model’

o Revision to this model to contain the ‘LoanAllocationSummary’ element.

 ‘LoanTradingSettlementAccruals.model’

o LoanTradingAccruingFeeAccrual

 Changed name to LoanTradingFacilityFeeAccrual (element changed

from ‘accruingFee’ to ‘facilityAccrual’)

 Changed name of ‘accrualTypeId’ element to ‘accruingFeeTypeId’ (still

complex type ‘AccrualTypeId.’

 Changed name of ‘type’ element to ‘accruingFeeType’ (still based on the

LoanTradingAccruingFeeTypeEnum).

 Added a ‘facilityReference’ (href) into this structure.

o ‘LoanTradingNonRecurringFee’

 Change the name of the complex type to ‘LoanTradingNonAccruingFee’

(changed the element name from ‘nonRecurringFee’ to

‘nonAccruingFee’).

 Moved outside of the model since this item did not contain any accruing

fees.

 Created and added a ‘NonAccruingFeeTypeId’ (element

‘nonAccruingFeeType’) for consistency with the ‘LoanTradingFacility

FeeAccrual’ structure.

 Change name of ‘feeType’ element to ‘nonAccruingFeeType’ and placed

it within an optional choice block with ‘MiscFeeType’. That optional

choice block relates to the newly created ‘NonAccruingFeeTypeId’ in a

way consistent with the relationship between type and ID type within the

‘LoanTradingFacilityFeeAccrual’ structure.

o ‘LoanTradingOutstandingAccrual’

 Changed name of the complex type to ‘LoanTradingLoanContract

Accrual’ (element name changed to ‘interest’ to ‘loanContractAccrual’).

o ‘LoanTradingLetterOfCreditAccrual’

 Changed element name from ‘letterOfCreditFee’ to ‘letterOfCredit

Accrual’.

 Created ‘LcFeeTypeId’ (based on ‘lcFeeTypeIdScheme’) and placed it in

sequence with the new ‘LoanTradingLetterOfCreditFeeType’ (based on

the ‘LoanTradingLetterOfCreditFeeTypeEnum’). The new

‘LoanTradingLetterOfCreditFeeType’ was made optional on the

sequence in keeping with the design for ‘LoanTradingFacilityFee

Accrual’ and ‘LoanTradingNonAccruingFee’.

11

 ‘PeriodWithDays.model’

o ‘numberOfDays’ element changed from type xsd:decimal to type xsd:integer.

 ‘SimpleBuyerSeller.model’

o Created a ‘simple’ version of ‘BuyerSeller.model’ to eliminate the account

references that are not applicable to the syndicated loan market.

11. Changes to Enumerations

The following enumeration changes have been made to better support the schema:

 ‘LoanAllAssetsEnum’

o Created this enum with a single value of ‘All.’

 ‘LoanAllTransactionsEnum’

o Created this enum with a single value of ‘All.’

**The above two new enumerations support the much-needed ability to explicitly

indicate within the LoanPartyProfileStatement that a set of contact details and

settlement instructions applies to all assets and/or all transactions.

 ‘LoanTradingLetterOfCreditFeeTypeEnum’

o Added to support revisions to the LoanTradingSettlementAccruals.model, with

values of ‘LetterOfCreditFronting,’ and ‘LetterOfCreditIssuance.’

 ‘LoanTradingNonRecurringFeeTypeEnum’

o Changed the name of this enum to’ LoanTradingNonAccruingFeeTypeEnum’.

All list items were found to be nonaccruing items, though the list was

originally named “…nonRecurring…” Since ‘accruing’ and ‘nonrecurring’ are

not necessarily mutually exclusive concepts, this was found to be a

problematic distinction in the loan schema.

 ‘LoanTradingSettlementTaskStatusEnum’

o Changed the name of the enum to ‘LoanTaskStatusEnum’ to make it more

universally usable (as opposed to specific to the loan trading settlement

scenario). Values within the enum were NOT changed.

12. Changes to Schemes

 ‘nonRecurringMiscFeeType’

o Changed to ‘miscFeeTypeScheme’. Since this more accurately is intended to

represent ‘one-off’ fee types and is a scheme, this change is appropriate to

make.

 ‘personRoleScheme’

o Added values from ‘applicablePurposeScheme’ to this scheme, along with

value definitions, to support its use within the ‘communicationDetails’

element discussed above.

 ‘businessUnitRoleScheme’

o Added values from ‘applicablePurposeScheme’ to this scheme, along with

value definitions, to support its use within the ‘communicationDetails’

element discussed above.

 ‘applicableTransactionTypeScheme’

12

o This scheme list was updated to better reflect the structuring of substitution

groups as well as business categorization of transaction types. The previous

scheme list reflected the former division of servicing events based on the

ambiguous collection of substitution groups that have since been revised for

5.11.

13

Incompatible Changes Compared to FpML 5.10 Recommendation
 Changes incompatible to FpML 5.10 are depicted above in red font.

